
RAD-1171 £51 IRREGULAR UAVEFRONTS IN DRTA-DRIVEN DATA-DMPNDENT 1/1
COMPUTATIONS(U) PITTSBURGH UNIV PR INST FOR
COMPUTATIONAL MATHEMATICS AND APPLICATIONS R 0 MELNEN

UNCLASSIFIED JUN 96 ICMR-86-94 N9SSI4-85-K-0339 F/0G 9/2 M

IIm

1111 1 w8 J.
IWO1 122O

.2 il m

MICOCPYREOLTIN ES CAR
NA" L BRA fST AS16-

%11 % NIII1

MICROCOPY~~" REOUIO.ETHR

Lfl

INSTITUTE FOR COMPUTATIONAL
U MATHEMATICS AND APPLICATIONS

OTechnical Report ICMA-86-94 June 1986

IRREGULAR WAVEFRONTS IN DATA-DRIVEN

DATA-DEPENDENT COMPUTAT IONS

by

Rami G. Meihem

Department of Mathematics and Statistics

University of Pittsburgh DTIC

w A.
f or publIc nkans =A~ =nki It

jq~ 022

Technical Report ICMA-86-94 June 1986

IRREGULAR WAVEFRONTS IN DATA-DRIVEN

DATA-DEPENDENT COMPUTAT IONS 6

by

Rami G. Meihem

Institute for Computational Mathematics and Applications
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PA 15260

To be presented in the AU 62 21986
International Workshop on Systolic ArraysA

University of Oxford

2-4 July 1986

Thf or ue h as been aPpro edI *.1

Public release or~d SlOe. its
distribuition is u.1irnited.

IRREGULAR WAVEFRONTS IN DATA-DRiVEN
DATA-DEPENDENT COMPUTATIONS

Rami G. Melbem

ABSTRACT

Data driven networks may be more eficient than clocked networks for computations

which require data dependent local cycles. However, the performance of such networks may

not be easily predicted because of possible delays in computations due to internal data
conflicts. In this paper. a technique. which is based on the irregular propagation of computa-
tion fronts, is suggested for the study of the behavior of networks with data dependent opera-
tions.

Accessjofl For

I DTIC TAB 0
ioi

Djstrjibuticn/._
Availabil-itY Codes_

,Avail axid/or
Dist Special %

") This work is supported, in part. under ONR contract N00014-85-K-0339
) On leave from the department of Computer Science. Purdue University, West Lafayette, IN 47907 %'",

* ~ e * ~ ~*'~. ...0

IRREGULAR WAVEFRONTS IN DATA-DRIVEN,
DATA-DEPENDENT COMPUTATIONS

RAW G. MELREM

INTRODUCTION

Both systolic (Kung 1982) and data driven networks (Kung 1984) share the advantages
of efficient communications and fast specialized cells which repeat the execution of specific

* local cycles. However. systolic networks are less flexible than data driven networks in the
sense that if the execution time of the local cycles is not constant. then the period of the global
synchronization clock should be taken large enough to accommodate the slowest local cycle.

In this paper, we-conside networks in which the execution time of local cycles depends
on the input data.(Typically. tAis may occur if the local cycles contain branching statements.
Although data driven networks are self-synchronized. and hence, local cycles are allowed to
have diferent execution times. it is not obvious that the execution of the entire network may
benefit from the fast execution of some local cycles. More specifically, internal data conflict
may force a'potentially short7'local cycle to wait extensively for its input.

The study of speed and efficiency of data driven networks with data dependent opera-
tions is extremely hard due to the asynchronous nature of the networks. Hence. we suggest a
technique for the estimation of a lower bound on the performance of such networks. Namely.
we introduce a simpler. hypothetical. type of computations. which we call pseudo-systolic. It
is obtained by forcing some synchronization on the data driven network such that its execution
alternates between communication and processing phases. Clearly, the additional synchroniza-
tion may only slow down execution, and hence. the analysis of pseudo-systolic computations
provide upper bounds on the execution time of the corresponding data driven computations.

The state of a pseudo-systolic computation at any given time may be represented by a
computation front. However. unlike the wave front concepts described by Weiser and Davis
(1981) and Kung (1984). the progress of the pseudo-systolic computation causes an irregular
propagation of the computation front. This irregularity reflects the differences in the execution
time of the local cycles.

Computation fronts may be systematically constructed by the application of some condi-
tions which are necessary for the consistency of data flow in pseudo-systolic networks. The
constructed fronts may then be applied to the estimation of the execution time of the
corresponding computation. This methodology is first illustrated in Section I with an example
of a linear array with simple cells. Then it is applied in Section 2 to 2-dimensional arrays and
in Section 3 to networks with complex cells.

DATA DRIVEN NETWORKS WI TRIVIAL/NONTRIVIL4 LOCAL CYCLES

A data driven network is defined here as a set of cells, each having a certain number of
input/output ports. and a set of unidirectional communication links, each connecting an output

-2-

port of some cell to an input port of another cell.
Each communication link directed from a cell q to a cell k is regarded as a queue Q capa-

ble of holding a certain number of data items. It is natural to assume that Q is empty at the
beginning of the operation of the network. However. it is sometimes useful to initialize Q
such that it contains some data items. In order to be more specific. let QX and QY represent
two links directed from cell q to cell k. and assume that. initially. QY is empty while QX
contains one data item (a zero for example). Now if. during operation. cell q writes x 2 .,
and y .Y 2...- on QX and QY. respectively, then the sequence of items read by cell k from the
same queues will be O.x I.x 2.... and Y IY2 respectively. This skewing effect is equivalent to
the one obtained in systolic (clocked) networks by the insertion of a delay element on the x-
stream communication line.

An Example
0 0 Y1 Y 2Y3 Y4 YS

0 O X1 X2 t 3 X. x X5 6 x 7

0 0 0 0 0 Front 1
0Front 2

a2.1 _ ". Front 2

a4 4.3 a 4 4 a 4 j a 4 ,6 -Front 6 13
45.3 a5.4 ' a 5.5 a5,6 a 5- Front 7

• - Front 8

Front 9

Figure 1: Matrix/Vector Multiplication (w-2)

The network shown in Figure 1 may be used for the multiplication of an n Xn banded
matrix A by a vector x. For simplicity, we assume that the number w of lower diagonals of
A is equal to the number of upper diagonals. and hence, the bandwidths of A is W =2w + I.

The network is composed of W cells, where each two consecutive cells k and k -1 are
connected by two links, which we call the x-link and the y-link. The queues on the y-links
are set to be initially empty and those on the x-links are set to contain a single data item.
namely a "zero'. U.sing the naming convention shown in Figure 1 for the 1/O ports. and using
the notation 0 - a and 0 - (11I to indicate that a is written on port 0 and that the value at
port I is read into A. respectively, we may describe the operation of each cell in the network
by the following algorithm:

ALG1: Repeat Forever
1) wait until the queues at I1, 12 and 13 are not empty
2) e - [111;7, .- [121; 0 #- [13i
3) 7 =7+ *
4) wait until the queues at 01 and 02 are not full
5) 01 -f:02 '-77

The five steps in ALGI constitute a local cycle which is repeated. indefinitely, by each
cell in the network. We assume that the computation time (step 3) and the communication
time (steps 2 and 5) do not depend on the values of the data items being processed. and we
denote these times by rm and r. respectively. With this. the execution time of any local cycle
which is not delayed by a wait in steps 1 or 4 is given by r, +?m. It is clear, however, that the
time of a local cycle may be longer than r'c +Tm if execution is delayed in steps I or 4.

DEFINITION: The "basic local cycle time is the time needed to complete the execution of a
local cycle, excluding any delay caused by a wait for new input or a wait for the consumption

- ." la dddlilmim- dii j HM ildii" " " ,-. , .. ,. ,- i !:;... i;- , ,," ,,] ,:- * ,*,.. -,.. , ,

-3-

of old output.
The sequence of inputs to the network is shown in Figure 1 (y I.y 2.... are set to zero). If

each input is made available to the network as soon as it is needed, then it is easy to verify
that the elements yi. i -1 n of the product vector y = Ax are produced at port 02 of cell
-w at time (2+i +W)(,r +rm).

The assumption that the basic local cycle time is constant leads to a mode of operation in
which, after few initial cycles, all the local cycles are automatically synchronized. The pro-
gress of the computation in this case may be best represented by the propagation of a computa-
tion front as shown in Figure 1.

For highly sparse matrices, the above network is clearly inefficient because most of the
elements received on ports 13 of cells -w.....w are zeroes. thus leading to trivial and unneces-
sary computations in step 3 of ALGI. In this case. we may improve the performance of the
network, and in the same time reduce the amount of its communication with the outside
world, by supplying only the non zero element of A along with their positions. More
specifically. the input a,. to port 13 of cell k is omitted if a,. ,, = 0. while if aj. *e 0.
the value of the .index i is supplied on an additional port. which we call 14. The precise opera-
tion of each cell may be described by the following algorithm:

ALG2: CT = -2: a - [131]: & - [14] /* CT is a local counter /
Repeat Forever

1) wait until the queues at II and 12 are not empty
2) f - [11]; 7 - [1] CT = CT + I
3) If(& - CT) then 3.1)'7,=-- +a*3.2) ci - --: [I]
4) wait until the queues on O and 02 are not full5) 01 ,- C 0 2 7-

::120 0 Y1 Y2 Y3 Y4 Y5

0! 000X1 2 X3 X 4 X 5 X(6 X1

3 a3 .1 2 a2.1 1 a1 .1 1 a 1. 2 a 2 45 a 5 3 5 a 5 .4 5 a. 5 3 a 3.4 4 a. 6 02 12
7 a 75 7 a7.6 9 a 9, 6 a6.7 6 a 6 &
9 a9 .7 8 a3.7 10 a10.10 8 a&, 7 a7 .9 0(,.,I

14 13

Figure 2: The Multiplication Network for Sparse Matrices (w-2)

The input to the modified network is shown in Figure 2 for a specific sparse matrix A.
Any element of A which is not included in the input is assumed to be zero.

Unlike ALGI. the basic local cycle time in ALG2 depends on the input data. More
specifically, it may assume one of two values depending on the result of the comparison in step
3. Let the two values be r, and r, for cycles which skip. and do not skip. respectively, step 3.

The architecture of each cell and the technology used to construct the network determine
7', and r'l. However. if we assume that the communication protocols are implemented in
hardware, and that the operations in step 3.1 are floating point operations. then it is reasonable
to assume that %0 <<. We will call an execution of a cycle which skips steps 3.1 and 3.2 a
trivial execution of the cycle. Although trivial executions of local cycles reduce the average
basic local cycle time. the efficiency of the entire network is determined by the delay intro-
duced in steps 1 and 4 of local cycles. More specifically. a computational cell executing a non-
trivial cycle may hold data which is necessary for the execution of a trivial local cycle in a
neighboring cell. In other words, the execution time of the network is determined by internal
data conflict.

-4-

Given the asynchronous nature of the computation. it seems that simulation is the only
method for the precise estimation of its execution , time. However. this requires the
specification of r,, and rl which depends on architecture and technology. In the next section.
we introduce a method which isolates and measures the effect of internal data conflict on the
performance of data driven/data dependent networks.

Pseudo Systolic Synchronization and Irregular Computation Fronts

In order to establish an upper bound on the execution time of networks with trivial/non
trivial local cycles, we consider a hypothetical mode of operation which we call Opseudo sys-
tolic". It is obtained by adding some global synchronization to the network such that com-
munication and computation take place in two alternating phases. Clearly. the delay intro-
duced by the additional synchronization may only slow down execution. and hence, a study of
the pseudo systolic mode of operation may be viewed as a worst case analysis of the asynchro-
nous mode of operation.

More specifically. we assume that all the cells in the network are connected to a
"hypothetical" controller which senses the state of execution of each cell. The controller.
presumably. forces successive executions of trivial local cycles of all the cells to take place in a
single phase which we call a communication phase. This phase is then followed by a process-
ing phase, in which only non trivial executions of local cycles take place. A communication
phase followed by a processing phase is called a global cycle.

For example, a pseudo systolic version of the network of Figure 2 may be obtained by
replacing step 3 in ALG2 with the following

3) IF (& = CT) THEN 3.1) wait for SYNC
3.2) 71=)_+a* j
3.3) 0 1- 13]; t -[.14]

where SYNC is a signal sent by the hypothetical controller at the end of a communication
phase. More specifically. during a communication phase. data is moving in the network until
each cell is either blocked in steps I or 4 due to data conflict or blocked in step 3.1. At this
point the controller issues SYNC, and all the cells which are blocked in step 3.1 execute 3.2
and 3.3 simultaneously, while the other cells remain idle. This is a processing phase.

-2 -1 0 1 2 k
1 4 .' a 4a 1 2-

2 . a 2 1 a •2.4 CF1

3 a3.1 . .4

4 . . . CF2

5 a 1,3 5.4 031.5

7 a .. a676 a . -- - QF 3

8 a8.7 .a89 CF 5

9 -- a 7 '9.9 ,'CF 6

10 . '. . CF 7
i

Figure 3. Irregular computation fronts.

Let M, be the subset of cells which are not idle during the processing phase of the t-th
global cycle. Clearly, only the cells in M, contribute to the advancement of the computation
during the t-th global cycle. Hence. the progress of the computations may be represented by
the propagation of a front which includes the data items being operated upon by cells in M,.

, .--....

-5-

More specifically, if &(t -k) = ai ,i +k. where a, .,.k is the element of A which is at cell k at the
beginning of the t-th processing phase. then the t-tb computation front may be defined by

CF, = Ia(t Ak): k e M,)

For example, we show in Figure 3 the computation fronts for the matrix/vector operation
given in Figure 2. The number of fronts. namely 7. indicates the number of global cycles.
Although. for small computations. it is possible to construct the fronts by tracing the execu-
tion of the network, it is obvious that a more systematic construction method is needed for
large computations. This is discussed in the next subsection.

Consistency of Data Flow Conditions

......,11 z z.
Figure 4. Data flow in a linear array

Let Z ,12.... be a sequence of data items which are flowing through a linear array of cells
C 1 C2 as shown in Figure 4. Let also d. be the -maximum capacity of each queue
corresponding to a communication link in the array. Clearly. during any particular instant.
the capacity of the queues should not be exceeded, and the order of items in the data stream
should be preserved. This may be formally stated as follows:

CONDITION (1): If q > k .and at any instant. zi is at cell c. and z, is at cell cq., then

d,(q-k) >I-i >0. (i)

CONDITION (2): If z, and z, arrive at cell ck at times t and v. respectively then

I <i ===> t <r. (2)

The above two conditions. which are necessary and sufficient for the consistency of data
streams in linear arrays, may be used to derive the relations between the elements of computa-
tion fronts in pseudo systolic computations. For example. consider the multiplication network
described in the last section. and let ai + A and a, j +9. be two elements in a specific front CF,.
This means that both cells k and q are active during the t-th global cycle, and hence. yj and
x +k are at ports 12 and II of cell k. respectively, and y, and x, are at ports 12 and II of
cell q. respectively. Assuming that the capacity of the x-links and y-links in the network are
d, and d.. respectively, we may apply condition (I) to get

d, (q -k) (-i) > 0 and d, (q -k) (+q)-(i +k) > 0

that is

min {d, -11 > > 0. (3)
q -k

Along the same line of thinking, condition (2) is translated to

(ai.ih eCF, aj+k eCF.)and(i > I) -=> t > r. (4)

Computation fronts for any specific input matrix pattern may be constructed by apply-
ing (3) and (4). More specifically, if each element a,., k of the input is associated with a posi-
tion (i A) as shown in Figure 3. then. equation (3) bounds the slope of the line segment joining

any two elements in the same front. For example. for d. =3 and d, =4. we obtain
l->0

a., +k .a,j eCF, > 3 1 > 0. (5)
q -k

-6-

Also (4) implies that computation fronts may not overlap. Hence, starting from the right
upper element in the graphical representation of the input (Figure 3). we may construct the
fronts recursively. More specifically, given CF 1 . F.... -1, we construct CF, such that

1) it includes as many elements of A as allowed by (5). and
2) there is no non zero elements of A between CF, and CF, -1.

As the above example shows. conditions (1) and (2) may be used to design algorithm for
the automatic construction of the computation fronts. thus providing a method for the deter-

mination of the number of global cycles needed to complete the computations.

Finally, we would like to note that the structure of each local cycle does affect the per-
missible slopes of the computation fronts. More specifically, the condition (1) was derived
assuming that each cell in Figure 4 performs a cycle of the form [read z ; compute ; write z].
If. however, the value of z is not altered. then it is possible to write the local cycle in the form
(read z : write z compute]. In this case, the condition (I) becomes

d, (q-k) > I-i > 0. (6)

The Execution Time of Pseudo-Systolic Computations

Let N be the number of global cycles needed to complete a specific pseudo systolic com-
putation. If 7o <<7j. then the execution time of the computation is T =N i'. However, if we
are not willing to neglect io. then T may be computed from

N (7)
T= E (A,+ 7T1 -r.(7

t=1

where A, is the time for the communication phase in the t-th global cycle. An upper bound
may be imposed on A,. t = IN by studying the changes in the data profiles which take
place during the communication phases. This is illustrated in the remaining of this section by
means of the previous matrix/vector multiplication example.

First, we define for each global cycle t the x and y data profiles. Namely. the x-data
profile is a function xP, : [-w .w] x {0.1.2) - I I.....n). defined such that xP (k .u) = i if. at
the end of the t-th global cycle. xi is the u-th element in the x-link queue at cell k. and
xP, (k .u) = T (undefined) if the length of that queue is less than u. For simplicity, we let
xP, (k .0) be the last value of x read by cell k during the t-th global cycle. The y-data profile
is defined in a similar way.

Next, we show how to construct xP from CF (the construction of yP, is similar). For
each cell k eM, . we know that xP (k ,0)=i +k. where ai., +k eCF,. Moreover, given any two
cells k qeM, such that 1) a,. +k, aI+,c-CF, and 2) for k <c <q. c is not in M,. we know
that the elements x,+k Xj +, -1 should occupy consecutive locations on the x-link queues.
starting at cell k. In other words. the profile between cells k and q is obtained from:

IF (k is the largest cell in M,) THEN last = n ELSE last = I + q - I
0=0:u =0
For X = i +k ast DO

xP, (k +P.u)X=
IF(u <d,) THEN u =u +IELSE u =0;A=$3+1

Forc-0+1.....q-1 DOxP,(c.0)=ast

At time 0. we may assume that all the elements are stored in the buffer of cell w. that is

XP..k q if k =w and q = 1.....n
xPo.(k ,) =I otherwise.

We also define the pseudo inverse function toc, such that toc, (x,)=k if xP (k ,,)=j for some
u . Now, during the t-th communication phase (denoted from now on by CP,). The data
movement in the network causes a change in the x and y profiles from xP, - and yP, -1 to xP,
and yP, . If we assume that d, =dy. then. it is easy to show that xP, (k .u) = yP (k .u)+k.

-7-

Hence. changes in the two profiles occur simultaneously and the time A, of CP, may be calcu-
lated by considering only the change in one profile, say the x-profile.

Consider a specific cell k and let x', _1(k .0) = i +k and xP, (k ,0) = I +k. Clearly. dur-
ing CP . cell k should execute xP, (k .0)-xP, _1(k .0) = 1-1 trivial local cycles. On the other
hand. if 16c, _1(x, +t) = k'. then x, +k should travel across (k -k) cells during CP, . in order to
reach its position in xP,. In other words, the communication activity in cell k during CP,
requires a time

A, (k) (xP, (k .0) - x , _1(k .0))r. + (k '-k

But CP, terminates when the communication activities in all the cells terminate, that is

A, = max{, (k); -w 4 k I< w.

This. when used in (7) provides an estimate for the execution time of the pseudo systolic
computation in terms of the parameters -r. and r.

APPLICATION TO 2-D NETWORKS

In this section we demonstrate how to construct the computation fronts for 2-D compu-
tations with trivial/non trivial local cycles. More specifically, we consider the multiplication
C = AB of two n X n banded sparse matrices on a (2w +1) x (2w +l) array (Weiser and
Davis. 1981). where w is the half band width of A and B. The array is shown in Figure 5
along with its input. For simplicity, we assume that allthe elements in the bands of A and B
are supplied to the network, and that each cell is capable of recognizing and skipping trivial
operations. We also assume that the capacities of the queues on the internal communication
links are arbitrarily large and that each queue does initially contain one data item, namely a
zero. More precisely. the operation of each cell is described by

2.- -2.- -2. 2. -2. 0 0 b1. 0 b3.5 b4 .6 b5 . 0 0 b8 10

0 0 b2,3 b3.4 0 b 5.6 b6.7 0 b$8. 0

.-2 0.-1 0.0 0,1 0.2 bI. b22 0 b4.4 b 5.5 0 b7.7 b51 b 9 , b10.10

0 b2.1 b 3.2 b4.3 bs., b6b5 0 bS.7 0 bjo.9,

b3.1 0 b 5.3 0 b, 5 ba.6 b 97 0 0- O

0 0 0 a a2, 0
0 a 2.1 0 a 2.3 a 2.,4

0 0 a3.3 0 0
4.2 a 43 0 a4i 0

0 0 0 a s,6 a 5.7
0 0 a 6,6 a 6.7 0
a .7 0 0 0 a .9
0 a .7 0 a 8.9 0
a,. 0 a9,9 0 0
410.8 0 a 10.10 0 0

Figure 5. A matrix/matrix multiplication computation

.. . ., - s ,- .,-- .,.- , "," , ","" , - ""- ,"- ,":" , -" ,i" ",, " " -. -A- " :"

-8-

ALG3: Repeat
1) wait until the queues on ports 1I,.12. and 13 are not empty2) * .- [I;] ,0 .- [12]; 'Y - [1 3]
3) O1 - C: 02 -
4) IF (a $A 0 and 0 $ 0) THEN4.2) wait for SYNC

4.2) y = y+ * S
5) 034*-v

Note that in ALG3. we assumed pseudo systolic operation. Of course. the normal data
driven operation may be obtained by removing step 4.1 from the local cycle of each cell.

The multiplication C =AB may be decomposed into C = ABr,. where each B, con-
r -w

tains the elements in the r-th off diagonal of B. In the network of Figure 5. the operation
C, = AB, is performed by the cells in row r of the 2-D array. Given that each row (r k).
k = -w....w of cells is a linear array, we may apply the same rules discussed earlier to the
construction of the fronts for that row. These fronts will be denoted by CF i*) ,CFJ 4

The t-th computation front of row r, CF,("). may be defined as either the set of elements
of A, or the set of elements of B. which are operated upon during the t-th global cycle. The
two sets are related and may be derived from each other. Here. we will choose the first alter-
native, that is. we will use A to represent the propagation of the computation.

The condition which relates the elements in the same front may be derived as follows:
Let ai.i+k and alj+, be in CF,(r). Then bi+k..+k, and b, qj+,, should be cells (rk) and
(r .). respectively, during the t-th global cycle. Noting that the values on the b data stream
are written in ALG3 as soon as they are read, we may apply (6) to get

S>(8)

which determines the slope of the computation fronts. In Figure 6, we show the fronts for the
computation of Figure 5. Note that. for any given row r. some non zero element of A are not
included in any front (in Figure 6. these elements are masked by a circle). More specifically, if

,.bj j .=0. for some j, then by ALG3 the operation aj - .j *bj,j , is skipped for q =-w.....w.
and hence the elements aj -, j are excluded from any front for row r.

0 0 0 (D.2 0 0 Q. a -. O...-CFf I) 0 0 0 a, 0 CF 1-1
o 0,. 2 .- ~23-f' a 0A 2.4-~ACF4) 0_ .1 2-2

0 0 0330 0 0 0 G3 3 0 0 0 . ' a3 3 0 0 Eo°

o Z oo I-, CF 0)Fa7 a 4.3 06) CF1 .i.i 5 CF

a 2740 0 a,,,9,FP 2 - 0. 0 0 02--44 3)
*0 0 A a 0 0 a -_e aj.., 4 CF41 0 2~j

0 00o o 0 0 2,,, 0

aio'0. 5.9 0 a$.;.O.a - CFA a a CFo 0

(a) for row 2 (b) for row I (c) at global cycle 4
Figure 6. The computation fronts

Unfortunately. the computations performed by the different rows in the array are not
independent. Namely, row r -1 receives data from row r. Loosely speaking. this implies that
CF,(r- 1) follows CF,(,). Stated differently, during any global cycle t. the fronts
CF (-CF,(w) are ordered in a non overlapping way.

-9-

In order to be more specific, consider two consecutive rows r and r -1. and assume that
ai.i+k eCF,(") and a,+ j+ eCF,(' - l) with k > q. The application of the condition (6) on both
the a-data stream and the result stream along the 450 links gives

I <i + (k--q -1). (9)

This means that if CF,(') passes through position (i). for some i and k. then CF,(' - ') may
not pass by a position (U q) which violates (9). For a fixed i and k . equation (9) is a straight
line with slope 1350 starting at (i k). Hence. (.q) should not cross that line. The piecewise
linear curve composed from such lines for all the elements in CF,() is called the envelope of
CF,("). which we denote by E,("). The envelope E,(r) should be used to separate CF,(r -1) from
CF,(r) during the construction of the former (see Figure 6).

In summary, after the construction of the computation fronts CF,(r). t = 1.2.... for row
r. the fronts for row r -1 may be constructed as follows.

1) Mask the elements of A which correspond to zeroes in the (r -1)-st diagonal of B.

2) Compute the envelopes E,). r = 1.2.... for the fronts in row r.
3) Construct the fronts in row r -1 recursively, such that. given CF r - 1) CFtr])

the front CF -(r -) satisfies the following.
1) it contains as many elements of A as allowed by (8).
2) there is no non zero elements of A between CF,(r - 1) and CF, t_- 1)

3) CF, - ') does not cross E,(r)

COMPUTATIONS WITH COMPLEX DATA DEPENDENT CYCLES

The concept of irregular computation fronts may be applied to data dependent network
even when the execution of each local cycle is more complex than the simple trivial/non trivial
scheme discussed so far. More specifically, we will discuss the case in which the basic local
cycle time may be any multiple of a unit time 7'1. In this case a pseudo systolic computation
may be assumed, such that successive snap shots of the computation fronts are obtained at rl
time intervals.

For example. let each input item ai +k in Figure 1 be a sparse m X m submatrix and
each y, and x, +4 be an m-dimensional subvector. and assume that step 3 of ALGI is a "smart"
matrix/vector operation which skips trivial multiplications and additions. In other words, the
time consumed in the operation y, = Yi + ai,. +k Xk in step 3 is equal to p, + 71. where A,, +k
is the number of non zero elements in a,. +k and -ri is the time of a multiply/add operation.

The consistency of data flow condition (1) may be applied to derive the same equation (5)
which governs the slopes of the computation fronts. However, a cell which operates on an ele-
ment a., * terminates the corresponding local cycle in time p .k 7 1's. which means that pi., +
computation fronts should pass through a,., +k. In Figure 7. we show the computation fronts
for the case in which each input a3 .,+k is a 2 X 2 submatrix. and hence O p.,+k <4. Non zero
elements are simply denoted by an x.

The time for communication phases may be computed as discussed earlier, except that.
now. the time ir required for steps 2 and 5 is the time for the transmission of m X m
matrices and m-dimensional vectors.

It was noticed earlier that the separation between any two fronts CF, -1 and CF, is an
indication of the communication activities during the t-tb global cycle. However, as seen in
Figure 7. only a small fraction of the cells are involved in communication during any specific
global cycle, due to the slow propagation of fronts. Hence, the separation between communi-
cation activities and computation activities does, in this case. result in an estimate of the exe-
cution time. which is rather pessimistic.

,, ,. ,. - -, , -, ,-, , -,, € ., ,- ,- . . ,- , ,,= . . ', :,.. . " -, ',.- .' -, '. '.-" .',-,, -. -, " / .. ' ,.. .. ' ... -' .- .. ', ,'. " . . ' ', .' . ..

- 10-

-xO-x-- 1- x0-0x- CF1
-Ox-Ox 00 00 xO CF2

xO- -x-O xO- xO - xO CF 3
-Ox X0O'--Xo -Ox 00

00 00 x- o xoC_

00 OxO - 0 0x- 0
-X 0 ox X) X- - F

,,.7-OXZZ o - CF7

Figure 7. Partitioned Matrix/Vector multiplication

A less pessimistic bound on the execution time may be obtained if we assume that r,, is a
multiple . i'l of the unit time r, and redefine a global cycle to be a span r, of time during
which any particular cell may process data (step 3 of ALGI). communicate data (steps 2 and
5) or sit idle (steps I and 4). In this case. the number of fronts passing through any particular
element a,.i +k is augmented to pi.j +k +o'. and the execution time of the network is given by
N 71 where N is the total number of fronts. We will not discuss this approach here any
further.

CONCLUSION

We presented a methodology for the estimation of the efficiency of data driven networks
with data dependent operations. It is based on the irregular propagation of computation fronts
and it takes into account the effect of internal data conflict without any assumption about the
architecture of the network or the technology used to implement it. The main objective of the
paper was to illustrate the methodology and the different related concepts. Its application to
the performance study of specific networks is presented in Melhem (1986a) and (1986b).

REFERENCES

Kung. H. T. (1982). Why Systolic Architecture. Computer 15.1. 37-46.
Kung. S. Y. (1984). On Supercomputing with Systolic/Wavefront Array Processors.

Proceedings of the IEEE. 72.7. 867-884.
Melhem. R. G. (1986a). Application of Data Driven Networks to Sparse Matrix Multiplication.

Proceedings of the 1986 International Conference on Parallel Processing. to appear.
Melhem. R. G. (1986b). Parallel Solution of Linear Systems with Sparse Striped Matrices:

Parts 1 and 2. Technical Reports ICMA-86-91/92. University of Pittsburgh.
Weiser U. and Davis A. (1981). A Wavefront Notation Tool for VLSI Array Design.

in VLSI Systems and Computations. ed. by H. T. Kung. B. Sproull and G. Steele.
Computer Science Press.

49

